
Solving Large LPs via the Ellipsoid Method1

• In this lecture, we will see some ideas behind an algorithm for solving linear programs. Indeed, this
method called the ellipsoid method, or more generally the cutting plane method, was used to produce
the first polynomial time algorithm for solving LPs. An exciting feature of the ellipsoid method is that
it doesn’t need the set of constraints to be explicitly given, and this power can be used to solve certain
LPs with exponentially many constraints exactly.

• A Feasibility Problem. Recall that a general LP is of the form

lp := minimize c>x =

n∑
j=1

cjxj (A General Linear Program)

Ax ≥ b, A ∈ Rm×n,b ∈ Rm

It will be convenient to consider the following feasibility problem. In this, we are given a system of
linear inequalities and asked whether there is a feasible solution or not.

P := {Ax ≥ b : A ∈ Rm×n,b ∈ Rm} =? ∅ (Feasibility)

Why is (Feasibility) helpful in solving (A General Linear Program)? Consider making a guess lpg on
the value of (A General Linear Program). Then, lpg ≥ lp if and only if Pg := {Ax ≥ b, c>x ≤ lpg}
is non-empty. In other words, lp is the smallest lpg for which (Feasibility) returns non-empty for
Pg. Therefore, if we have the ability to solve (Feasibility), then using binary search one can solve
(A General Linear Program) as well. Indeed, when A, b consists of rational numbers, the number of
iterations of the binary search can be shown to be at most a polynomial in the length of the input.
Henceforth, we concern ourselves with (Feasibility).

• Assumptions. To describe the main idea, we make the following two assumptions. Both these assump-
tions can be removed with extra work to solve LPs exactly, but we won’t discuss how.

– P ⊆ Bn(0, R), that is, P is contained in an n-dimensional ball of radius R where R is “not
too big”. For most of our applications in approximation algorithms this holds since most often
P ⊆ [0, 1]n ⊆ B(0,

√
n).

– If P is non-empty, then it is full-dimensional and furthermore we assume voln(P), the n-
dimensional volume of P , is not too small. In particular, voln(P) > γn where log(γ−1) is
at most a polynomial in the length of the input. The fact below shows why this is the case for
rational full dimensional polytopes.

Fact 1. If P := {Ax ≥ b,x ≥ 0} where A,b have rational entries, then if P is full-dimensional
and non-empty we have voln(P) ≥ ρ−poly(n) where ρ := maxi,j (|Aij |, |bj |) and | · | indicates
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the maximum value of numerator or denominator of these rational numbers.

Proof. (Sketch) IfP is full-dimensional, then it contains an (n+1)-simplex with corners {v0, . . . ,vn}
such that each vi is a basic feasible solution of P and the vectors (vi − v0) form a basis of Rn. One
can lower bound voln(P) by the volume of the simplex which is precisely

voln(P) ≥
1

n!

∣∣∣det (v0 − v1,v0 − v2, . . . ,v0 − vn)︸ ︷︷ ︸
call this matrix M

∣∣∣
where the vectors are written as column vectors.

Each entry of M is a rational number if A,b are rational. Furthermore, each vi := B−1bB for some
n×n non-singular sub-matrix ofA. By standard linear algebra (Cramer’s Rule), every entry of vi, and
therefore also M , is a rational number p/q where |p|, |q| ≤ ρpoly(n). If M is non-singular, applying
Cramer’s rule again, we get each entry of M−1 is also bounded by γ ≤ ρpoly(n) By Hadamard’s
inequality, which states that the determinant of any matrix is at most the product of the `2 lengths of
the rows, we get |det(M−1)| ≤ γpoly(n) implying |det(M)| ≥ γ−poly(n) = ρ−poly(n).

• Access to the matrix : the separation oracle. It is important to understand how P is given to us.
One could describe P by describing all the rows of the matrix A. However, if A has exponentially
many constraints in n, for instance such an LP was the Steiner Forest LP we worked with, then this
is not feasible. Instead, the ellipsoid algorithm works with the following weaker “oracle” called the
separation oracle.

Definition 1 (Separation Oracle). Given any z ∈ Rn to Osep(z) either asserts z ∈ P , or returns
a non-zero c ∈ Rn and β ∈ R such that (i) c>x ≥ β for all x ∈ P , but (ii) c>z < β.

In other words, Osep(z) either asserts Az ≥ b, or returns a constraint c in the non-negative span of
the rows of A such that c>z < β, where β is the same non-negative combination of b. Later on, we
will see some examples where separation oracles exist. For now, let’s assume this oracle exists. Note
that if A was explicitly given, we can clearly simulate this oracle.

• Geometric Preliminary I : Ellipsoids. Before we dive into the ellipsoid algorithm, it is important to
brush up on what ellipsoids are.

Let’s begin with two dimensions where the ellipsoids are simply called ellipses, and what is covered
in high-school coordinate geometry. The simplest ellipse is a ball, and the equation of a radius 1 ball
centered at the origin is precisely B2(0, 1) := {(x, y) : x2 + y2 ≤ 1}. An axis-aligned ellipse
has a major axis of length 2a and minor axis of length 2b, with a ≥ b. The region bounded by this
two-dimensional ellipse is

E
||
2 (a, b) :=

{
(x, y) :

x2

a2
+
y2

b2
≤ 1
}
=
{
x :=

(
x
y

)
: x>

[
1
a2

0
0 1

b2

]
︸ ︷︷ ︸

call this D

x ≤ 1
}

where the second description, right now, seems to be a fancy way of writing the same thing.
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Next, we consider a general ellipse centered at the origin. This is simply a rotation of an axis-
aligned ellipse. So, it can be written as {(x′, y′) : x′2

a2
+ y′2

b2
≤ 1

}
, where (x′, y′) is found by

applying a rotation linear transform R on the original coordinates (x, y). Here, the rotation linear

transform R is a 2 × 2 matrix satifying R>R = RR> =

[
1 0
0 1

]
. Such matrices are also called

orthogonal/orthonormal matrices.

And therefore, the equation of such ellipses look like

E2(a, b) :=
{
x : (Rx)>D(Rx) ≤ 1

}
= {x : x>

(
RTDR

)
x ≤ 1}

The matrix R>DR = R−1DR is a very special kind of matrix when R is a rotation matrix and D is a
diagonal matrix with positive entries. It is a symmetric matrix and all its eigenvalues are positive and
are indeed the diagonal entries of D. Furthermore, any symmetric matrix with positive eigenvalues
looks like this. Such matrices have a name : they are called positive definite matrices with the notation
Q � 0 to denote them. And this leads to the general definition of an ellipsoid in high-dimensions.

Definition 2. An ellipsoid E in n-dimensions is characterized by an n × n symmetric positive
definite matrix Q � 0 and a center v ∈ Rn, and is defined to be

E := E(Q,v) = {x ∈ Rn : (x− v)>Q−1 (x− v) ≤ 1}

The volume of the ellipsoid is precisely det(Q).

Note that the R>DR matrix is replaced by Q−1 instead of Q; this is simply the preferred notation.

• Geometric Preliminary II : Enclosing Ellipsoids. Let K ⊆ Rn be a convex set in n-dimensions.
The minimum volume enclosing (MVE) ellipsoid of K, as the name suggests, is the ellipsoid E with
the smallest volume such that K ⊆ E . This ellipsoid is also called the Löwner-John ellipsoid and
arises in many applications, has many beautiful properties, and something which is worth knowing.
Unfortunately, it is out of the scope of these notes.

What we would be interested in are MVEs of a very special type of convex set K: “hemillipsoids”.

Definition 3. Given an ellipsoid E := E(Q,v) ⊆ Rn and a non-zero vector c ∈ Rn, the hemil-
lipsoidH := E(Q,v, c) is defined as

H := E(Q,v, c) = {x ∈ Rn : (x− v)>Q−1 (x− v) ≤ 1} ∩ {x ∈ Rn : c>x ≤ c>v}

That is, it is the half of the ellipsoid cut by a hyperplane passing through its center.

One can precisely figure out the formula for the minimum volume ellipsoid for a hemillipsoid. I will
simply state this without proof. What is important really is that there exists a formula which is easy
to calculate.
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Fact 2. The minimum volume ellipsoid containing the hemillipsoid E(Q,v, c) is the ellipsoid
E ′ := E(Q′,v′) where

– v′ := v − d

– Q := n2

n2−1 ·
(
Q− 2

n+1dd
T
)

where d := 1√
c>Qc

·Qc.

The main theorem that will be used by the ellipsoid algorithm qualitatively states that for any ellipse
E and any hemillipsoid H ⊆ E defined by any hyperplane c, the minimum volume ellipsoid E ′
containing H has volume a multiplicative factor smaller than that of E . It is not too difficult to prove
the theorem below using the formula above.

Theorem 1 (Considerable Shrinkage). Let E := E(Q,v) be any n-dimensional ellipsoid, and
let c ∈ Rn be any non-zero vector defining the hemillipsoid H := E(Q,v, c). Let E ′ be the
minimum volume ellipsoid containingH defined in Fact 2. Then

voln(E ′) ≤ voln(E) · e−1/2n

• The Basic Ellipsoid Algorithm. Now we have all the tools to state and semi-analyze the ellipsoid
algorithm.

1: procedure BASIC ELLIPSOID(Osep, R, γ): . R and γ as in the assumptions.
2: E0 ← B(0, R); v0 ← 0. . Start with a ball, and by assumption P ⊆ E0
3: i← 0; Qi ← R · In; vi ← 0.
4: while true do:
5: Query Osep(vi).
6: If Osep returns vi ∈ P , return FEASIBLE.
7: Else, Osep returns c, β with c>vi < β ≤ c>x for all x ∈ P .
8: . In that case, note that P ⊆ Ei ∩ {x : (−c)>x ≤ (−c)>vi}.
9: Find MVE Ei+1 := E(Qi+1,vi+1) of E(Qi,vi,−c) using Fact 2. . Note P ⊆ Ei+1

10: if voln(Ei+1) ≤ γn then:
11: return INFEASIBLE.
12: i← i+ 1.

Theorem 2. If P satisfies the assumptions mentioned in Page 1, then BASIC ELLIPSOID algo-
rithm returns the correct answer in 2n2 · ln (2R/γ) iterations.

Proof. As noted in the algorithm, we maintain the invariant P ⊆ Ei, and thus, voln(P) ≤ voln(Ei). In
each iteration where the algorithm doesn’t return, the volume voln(E) shrinks by e−1/2n. Therefore,
if the algorithm runs for T iterations and doesn’t return, we know that

voln(P) ≤ voln(E0) · e−T/2n ≤ (2R)n · e−T/2n

When T > n2 ln(R/γ), the RHS is at most (2R)n ·
( γ
2R

)n
= γn. This contradicts Line 10.
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• An Application to algorithms. I end this note by noting one application of the ellipsoid algorithm
to so-called “design problems”. A particular example is the max-min spanning tree problem. In this
problem we are given an unweighted, undirected graph G = (V,E). The objective is to find non-
negative weights w(e) for every edge such that

∑
e∈E w(e) ≤ 1 and the weight of the minimum

weight spannning tree in G = (V,E) with respect to these weights, is maximized. This is a game
between the algorithm, which is trying to spread mass on the edges, and is trying to compete with an
adversary who will pick the minimum weight tree after the algorithm’s play. Can we find the optimal
way of putting weights?

At first glance, it is not obvious that this is an easy problem. We now show, using the ellipsoid method,
that just the fact that solving the minimum weight spanning tree is “easy”, implies that the max-min
spanning tree problem can be solved in polynomial time.

First we observe that the max-min spanning tree problem is actually a linear program on exponentially
many constraints. To that end, let T denote the set of all spanning trees in G. Then, the max-min
spanning tree problem is asking us to solve

mmst := maximize λ (Max-Min Spanning Tree)

λ−
∑
e∈T

we ≤ 0, ∀T ∈ T (1)∑
e∈E

we ≤ 1, we ≥ 0, ∀e ∈ E

The above LP has |E| + 1 variables, but |T | many constraints, and the latter can be as large as nn.
However, we can solve the above problem using the ellipsoid algorithm. It’s not too hard to see that
the above region is full-dimensional (unless the number of trees is too small). More interestingly,
what is Osep for this polytope? Well, given (λ, ze) can we check if it satisfies all the constraints? The
last two are trivial to check. And now observe that (1) can be checked by using the minimum spanning
tree algorithm on (G, z) and seeing if this minimum cost is ≥ λ or not. If yes, then it’s feasible. If
not, then (1) corresponding to the minimum weight spanning tree T is the separating hyperplane.

Notes

The book [2] is the book to read about the ellipsoid algorithm and much, much more. There are many details
we have left out above, even for the basic ellipsoid method. Especially the fact how one deals with irrational
numbers which definitely arises when one takes square roots (take a look again at the d vector in Fact 2).
Tackling non-full dimensional polytopes also needs many new ideas. We refer the interested reader to [2]
for all these things. The example on max-min spanning tree is taken from the paper [1] by Chakrabarty,
Mehta and Vazirani.
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